Math 255B Lecture 19 Notes

Daniel Raban

February 21, 2020

1 Development Toward the Spectral Theorem for Unbounded Self-Adjoint Operators

1.1 The resolvent

Let $T: D(T) \to H$ be closed and densely defined. We said $\lambda \notin \operatorname{Spec}(T) \iff T - \lambda : D(T) \to H$ is bijective and defined the **resolvent** as $R(\lambda) = (T - \lambda)^{-1} \in \mathcal{L}(H, H)$ for $\lambda \in \rho(T) = \mathbb{C} \setminus \operatorname{Spec}(T)$, the **resolvent set**.

Proposition 1.1. The resolvent set $\rho(T) \subseteq \mathbb{C}$ is open, and $\rho(T) \ni \lambda \mapsto R(\lambda) \in \mathcal{L}(H, H)$ is holomorphic.

Proof. If $\lambda_0 \in \rho(T)$ write

$$T - \lambda = (T - \lambda) - (\lambda - \lambda_0) = (1 - (\lambda - \lambda_0)R(\lambda_0))(T - \lambda_0).$$

It follows that $T - \lambda$ is invertible for $|\lambda - \lambda_0| < \frac{1}{\|R(\lambda_0)\|}$. We also have

$$R(\lambda) = R(\lambda_0) = R(\lambda_0)(1 - (\lambda - \lambda_0)R(\lambda_0))^{-1}$$
$$= \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0)^{n+1}.$$

This converges in $\mathcal{L}(H, H)$, so $R(\lambda)$ is holomorphic.

Proposition 1.2. If T is self-adjoint, then $\text{Spec}(T) \subseteq \mathbb{R}$.

Proof. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$,

$$||(T - \lambda)u||^{2} = ||(T - \operatorname{Re} \lambda)u||^{2} + (\operatorname{Im} \lambda)^{2} ||u||^{2}.$$

We also have

$$||R(\lambda)||_{\mathcal{L}(H,H)} \leq \frac{1}{|\operatorname{Im} \lambda|}.$$

1.2 Nevanlinna-Herglotz functions for self-adjoint operators

Example 1.1. Let $D(\mathscr{A}) \to H$ be self-adjoint, $\langle \mathscr{A}u, u \rangle \geq c ||u||^2$ for $u \in D(\mathscr{A})$, and $\mathscr{A}^{-1}: H \to H$ be compact. Then Spec(A) is of the form $\lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$. Let e_j be an orthonormal basis of H such that $(\mathscr{A} - \lambda_j)e_j = 0$. Then for $u = \sum_j x_j e_j \in H$,

$$\langle R(z)u,u\rangle = \sum \frac{|c_j|}{\lambda_j - z} = \int \frac{\xi - z}{\lambda_j} d\mu(\xi), \qquad d\mu = \sum |c_j|^2 \delta(\xi - \lambda)$$

This is a positive, pure point measure of total mass $\int d\mu = ||u||^2$ (by Parseval).

Let $A: D(A) \to H$ be self-adjoint, and consider the holomorphic function

$$f(z) = \langle R(z)u, u \rangle, \quad \text{Im } z > 0.$$

Then $|f(z)| \leq \frac{C}{|\operatorname{Im} z|}$, where $C = ||u||^2$. We have

$$2i \operatorname{Im} f(z) = \langle R(z)u, u \rangle - \langle R(z)^*u, u \rangle$$

Using $R(z)^* = R(\overline{z})$,

$$=\langle (R(z) - R(\overline{z}))u, u \rangle$$

We can also check via algebraic manipulation that $R(\lambda) - \mathbb{R}(\mu) = (\lambda - \mu)R(\lambda)R(\mu)$. Using this,

$$= 2i \operatorname{Im} z \left\langle R(z)^* R(z) u, u \right\rangle.$$

So we get

$$\operatorname{Im} f = \operatorname{Im} z \| R(z) u \|^2.$$

In particular, $\operatorname{Im} f \ge 0$ for $\operatorname{Im} z > 0$.

Now we can use the following general result from complex analysis.¹

Theorem 1.1 (Nevanlinna, Herglotz,...). Let f be a holomorphic function in Im z > 0 with $\text{Im } f \ge 0$ and $|f(z)| \le \frac{c}{\text{Im } z}$. Then there is a uniform bound

$$\int \operatorname{Im} f(x+iy) \, dx \le C\pi \qquad \forall y > 0,$$

and there exists a positive bounded measure μ on \mathbb{R} such that

$$\frac{1}{\pi} \int \varphi(x) \operatorname{Im} f(x+iy) \, dx \xrightarrow{y \to 0^+} \int \varphi \, d\mu \qquad \forall \varphi \in C_B := (C \cap L^\infty)(\mathbb{R}).$$

¹This is a standard result. It was even a qualifying exam problem in the past.

We have

$$f(z) = \int \frac{1}{\xi - z} d\mu(\xi), \qquad \text{Im } z > 0,$$
$$\int d\mu(\xi) = \lim_{y \to +\infty} y \operatorname{Im} f(iy) = \lim_{z \to \infty} (-zf(z)),$$

where $z \to \infty$ with $\arg(z)$ bounded away from $0, \pi$.

Conversely, if $\mu \ge 0$ is a bounded measure on \mathbb{R} and f is defined by $f(z) = \int \frac{1}{\xi - z} d\mu(\xi)$, then both the weak convergence and the limit condition hold.

Proof. Take the semicircle contour γ (slightly above the real axis) made of Im z = c > 0 and an arc of radius R. Cauchy's integral formula gives

$$\begin{split} f(z) &= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \\ &= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\frac{1}{\zeta - z} - \frac{1}{\zeta - z^*} \right) \, d\zeta, \end{split}$$

where z^* is the reglection of z over the line Im z = c. That is, $z^* = \overline{z} + 2ic$.

$$= \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \frac{z - z^*}{(\zeta - z)(\zeta - z^*)} d\zeta$$

Letting $R \to \infty$, we get

$$f(z) = \frac{1}{2\pi i} \int_{L_c} \frac{f(\zeta)(z - z^*)}{(\zeta - z)(\zeta^* - z^*)} \, d\zeta,$$

where L_c is the whole line Im z = c and $(\zeta - z)(\zeta^* - z^*) = |\zeta - z|^2$. Take the imaginary part of this to get

$$\operatorname{Im} f = \frac{\operatorname{Im} z - c}{\pi} \int_{L_c} \frac{\operatorname{Im} f(\zeta)}{|\zeta - z|^2} d\zeta$$

Multiply by Im z and let Im $z \to \infty$ while keeping Re z fixed: the left hand side is $\leq c$. By Fatou's lemma,

$$\frac{1}{\pi} \int_{\mathbb{R}} \operatorname{Im} f(x+ic) \, dx \le c.$$

By Banach-Alaoglu, there is a sequence of $c_n \to 0^+$ and a positive, bounded measure μ on $\mathbb R$ such that

$$\frac{1}{\pi} \operatorname{Im} f(x + ic_n) \, dx \xrightarrow{\operatorname{weak}^*} \mu.$$

We get that

$$\operatorname{Im} f(z) = \operatorname{Im} z \int \frac{1}{|\xi - z|^2} \, d\mu(\xi), \qquad \operatorname{Im} z > 0.$$

This implies that

 \mathbf{SO}

$$\operatorname{Im}\left(f(z) - \int \frac{1}{\xi - z} d\mu(\xi)\right) = 0,$$
$$f(z) = \int \frac{1}{\xi - z} d\mu(\xi),$$

proving the first claim.

We will finish the proof of the theorem next time.